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Abstract
Non-invasive blood glucose monitoring has been a long-sought goal for diabetes management, aiming to eliminate the need 
for painful finger-prick tests. Recent advancements in optical and biosensor technologies have enabled the development of 
wearable glucose monitors that provide continuous, real-time measurements. This article explores the physics and mathematical 
principles underlying pulse oximetry-based glucose monitoring, recent market developments, and key players in this emerging 
field. It also discusses the role of Artificial Intelligence (AI) in enhancing accuracy, the regulatory landscape, and future 
directions for non-invasive glucose monitoring technologies.
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1. Introduction
Diabetes management relies heavily on frequent blood glucose 
monitoring to prevent complications. Traditionally, this has been 
achieved through invasive finger-prick tests and Continuous 
Glucose Monitors (CGMs) that require subcutaneous sensor 
implantation. However, the demand for non-invasive glucose 
monitoring has driven research into optical, electrochemical, and 
biosensing technologies.

Pulse oximetry, a well-established method for measuring blood 
oxygen saturation, is now being explored for non-invasive glucose 
monitoring. By leveraging the optical properties of glucose and 
its interactions with light in the Near-Infrared (NIR) and Mid-
Infrared (MIR) spectrum, researchers aim to develop reliable, non-
invasive devices as illustrated in Figure 1 and Figure 2. This article 
delves into the underlying physics, mathematical models, market 
availability, pioneers leading this revolution, and how AI plays a 
crucial role in refining technology.
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Overall, pulse oximetry is a noninvasive optical technique widely 
used for monitoring blood oxygen saturation (SpO₂) and heart rate. 
However, researchers have been exploring its application for non-
invasive blood glucose measurement, which could revolutionize 
diabetes management by eliminating the need for frequent finger 
pricks.

All in all, Pulse oximetry-based blood glucose measurement 
holds great potential as a noninvasive technique, but further 
advancements in infrared spectroscopy, AI-driven signal 
processing, and personalized calibration are needed to achieve 
clinical-grade accuracy. As technology evolves, noninvasive 
glucose monitoring may become a practical reality for diabetes 
management.

2. Working Principle of Pulse Oximetry
Traditional pulse oximetry relies on the differential absorption of 
light at two wavelengths (typically 660 nm - red light, and 940 nm 
- infrared light) through pulsatile blood flow in the capillaries. The 
ratio of absorbed light is used to estimate oxygen saturation. See 
Figure 2 and Figure-3 as well.

As of February 2025, non-invasive blood glucose monitoring 
devices are emerging in the market, aiming to provide alternatives 
to traditional finger-prick methods. These devices utilize various 
technologies, including optical methods like pulse oximetry, to 
estimate blood glucose levels without penetrating the skin.

The landscape of non-invasive blood glucose monitoring is 
evolving, with several companies pioneering technologies to 
provide alternatives to traditional methods. While some devices 
are available over-the-counter, it is crucial to stay informed about 
their regulatory status and consult healthcare providers to ensure 
their suitability for individual health needs.

In respect to regulatory consideration, as we stated it is important 
to note that while these devices are becoming more accessible, the 
U.S. Food and Drug Administration (FDA) has not authorized, 
cleared, or approved any smartwatch or smart ring intended 
to measure or estimate blood glucose levels on its own. Users 
should exercise caution and consult healthcare professionals 
when considering the use of such devices as depicted in Figures 1 
through -3 for medical purposes yet.
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Recent Developments in Non-Invasive Glucose Monitoring 
Devices are listed below as beginning of 2025 and they are

• reuters.com
Abbott follows rival Dexcom with OTC glucose monitor launch 
in US.
160 days ago

Note that DexCom’s Stelo is an Over-The-Counter (OTC) 
Continuous Glucose Monitor (CGM) that provides real-time blood 
glucose readings via a smartphone app, expanding accessibility 
beyond traditional prescription-based CGMs.

CGMs (Continuous Glucose Monitors) are wearable medical 
devices that continuously track blood glucose levels in real-time. 
They use a small sensor inserted under the skin to measure glucose 
in interstitial fluid and transmit data to a receiver, smartphone, or 
smartwatch. CGMs help individuals with diabetes manage their 
condition by providing insights into glucose trends, detecting 
fluctuations, and reducing the need for frequent finger-prick tests. 
Advanced models integrate AI and predictive analytics to enhance 
accuracy and personalized diabetes management.

• barrons.com
Sugar High: How a Glucose Monitor Told Me Startling Things 
About My Diet.
143 days ago

• wired.com
Review: Abbott Lingo Continuous Blood Glucose Monitor
21 days ago.

While the pioneers in Non-Invasive Glucose Monitoring are:

Afon Technology: Afon Technology is developing Glucowear™, 
a completely non-invasive, continuous blood glucose monitor. This 
device aims to empower individuals with diabetes by providing 
real-time glucose data without the need for invasive procedures.
afontechnology.com

Know Labs: Know Labs is working on the KnowU, a non-
invasive, wearable continuous blood glucose monitor. Their 
technology focuses on identifying and measuring molecules in the 
body without the need for invasive sampling.
https://www.knowlabs.co/?utm_source=chatgpt.com

However, the current market offering are given by the following 
medical device companies are

Abbott's Lingo: Abbott has introduced the Lingo continuous 
glucose monitoring system in the U.S. market. Designed for adults 
not on insulin therapy, Lingo consists of a coin-sized adhesive 
skin patch that transmits blood sugar readings to a smartphone via 
Bluetooth. Pricing starts at $49 for a two-week sensor.
reuters.com

DexCom's Stelo: DexCom has launched the Stelo continuous 
glucose monitor, also targeting non-insulin-dependent individuals. 
Like Lingo, Stelo provides continuous blood glucose readings 
through a wearable sensor that connects to a smartphone app. The 
device is available Over-The-Counter, expanding access beyond 
traditional prescription-based models.
barrons.com

3. Mathematical and Physical Analysis of Pulse Oximetry for 
Blood Glucose Measurement
The Mathematical and Physical Analysis of Pulse Oximetry for 
Blood Glucose Measurement explores how glucose concentration 
affects light absorption, scattering, and refractive index in blood, 
using principles like Beer-Lambert Law and Mie Theory to 
estimate glucose levels non-invasively.

This section details the mathematical foundations behind optical 
glucose sensing, including absorption coefficients, scattering be-
havior, and signal processing techniques like Photoplethysmogra-
phy (PPG). AI-enhanced models refine these signals by filtering 
noise and improving measurement accuracy for non-invasive glu-
cose monitoring.

3.1 Optical Absorption and Beer-Lambert Law
The fundamental principle governing pulse oximetry and glucose 
measurement is the Beer-Lambert Law, which describes how light 
is absorbed as it passes through a medium:

Where:

I = Transmitted light intensity.
I 0 = Incident light intensity from the source.
μ 0 = Absorption coefficient (dependent on glucose concentration 
and wavelength)
d = Optional path length through the tissue.

For multi-wavelength absorption, we extend the equation to 
account for different chromophores:

Where:
•
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3.2 Optical Scattering and the Mie Theory
In biological tissues, light does not only get absorbed but also 
scatters due to interactions with red blood cells, proteins, and 
glucose molecules. This scattering is described by Mie scattering 
theory, where the scattering coefficient μs  is given by:

Where:

• N = Number density of scatterers (blood cells, glucoses 
molecules).
• σs = Scattering cross-section.

The total attenuation coefficient  μt (which includes both absorption 
and scattering) is given by:

Glucose changes the refractive index of interstitial fluid, 
affecting scattering properties. The relationship between glucose 
concentration CG  and refractive index   follows:

where k is a proportionally constant. As n changes, light scattering 
angles and intensity also change, which can be detected in a pulse 
oximeter.

3.3 Photoplethysmography (PPG) Signal Processing
Pulse oximeters measure pulsatile blood volume changes using 
Photoplethysmography (PPG). The PPG signal consists of an AC 
component (due to arterial pulsation) and a DC component (due to 
non-pulsatile tissue absorption). The AC-to-DC ratio at different 
wavelengths is used to estimate glucose concentration.

For a given wavelength  λ, the PPG signal is:

The AC/DC ratio, which depends on glucoses concentration, is 
given by:

where λ1 and λ2 are selected wavelengths in the Near-Infrared 
(NIR) range.

3.4 Machine Learning & Signal Calibration
To extract glucose concentration, machine learning techniques such 
as Principal Component Analysis (PCA), Partial Least Squares 
Regression (PLSR), and Neural Networks are used to analyze the 
spectral signals and separate glucose-dependent absorption from 
other noise sources.

A general regression model for glucose prediction is:

where  f is a nonlinear mapping function trained on calibration 
data.

3.5 Signal-to-Noise Ratio (SNR) Analysis
Since glucose signals are weak, the Signal-to-Noise Ratio (SNR) 
is crucial. The SNR is defined as:

To improve SNR the following points can be taken into 
consideration:

• Filtering techniques like adaptive filtering and wavelet denoising 
are used.
• Multi-sensor fusion (combining optical, thermal, and electrical 
sensors) enhances accuracy.
• AI-based noise reduction using deep learning models refines 
glucose estimation.

In conclusion, we state that by integrating optical absorption (Beer-
Lambert Law), scattering (Mie Theory), PPG signal processing, 
and AI-driven spectral analysis, pulse oximetry can potentially be 
used for noninvasive glucose monitoring. However, challenges 
like low signal strength, inter-individual variability, and motion 
artifacts require further research and technological advancements 
for clinical implementation.

3.6 AI’s Role in Non-Invasive Glucose Monitoring
AI plays a crucial role in non-invasive glucose monitoring by 
enhancing signal processing, predictive analytics, and wearable 
device integration, improving accuracy and personalizing glucose 
estimation for users [1-3].

By leveraging machine learning (ML), deep learning, and real-time 
data analysis, AI helps filter noise from optical signals, calibrate 
devices for individual users, and integrate glucose monitoring 
with smartwatches, IoT devices, and mobile health apps, making 
diabetes management more efficient and accessible.

For the purpose Artificial Intelligence (AI) application driven 
pulse oximetry the following points can be considered as:

3.7  AI Driven Signal Processing and Noise Reduction
Ai enhances glucose monitoring by applying Machine Learning 
(ML) models to raw Photoplethysmographic (PPG) and Near-
Infrared Spectroscopy (NIRS) signals. These models filter out noise 
from movement, ambient light fluctuations, and physiological 
variations.
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where 1  and 2  are selected wavelengths in the Near-Infrared (NIR) range. 
 
3.4 Machine Learning & Signal Calibration 
 
To extract glucose concentration, machine learning techniques such as Principal Component Analysis (PCA), Partial 
Least Squares Regression (PLSR), and Neural Networks are used to analyze the spectral signals and separate 
glucose-dependent absorption from other noise sources. 
 
A general regression model for glucose prediction is: 
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where f  is a nonlinear mapping function trained on calibration data. 
 
3.5 Signal-to-Noise Ratio (SNR) Analysis 
 
Since glucose signals are weak, the Signal-to-Noise Ratio (SNR) is crucial. The SNR is defined as: 
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To improve SNR the following points can be taken into consideration: 
 
 Filtering techniques like adaptive filtering and wavelet denoising are used. 
 Multi-sensor fusion (combining optical, thermal, and electrical sensors) enhances accuracy. 
 AI-based noise reduction using deep learning models refines glucose estimation. 

 
In conclusion, we state that by integrating optical absorption (Beer-Lambert Law), scattering (Mie Theory), PPG 
signal processing, and AI-driven spectral analysis, pulse oximetry can potentially be used for noninvasive glucose 
monitoring. However, challenges like low signal strength, inter-individual variability, and motion artifacts require 
further research and technological advancements for clinical implementation. 
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wearable device integration, improving accuracy and personalizing glucose estimation for users [1-3]. 
 
By leveraging machine learning (ML), deep learning, and real-time data analysis, AI helps filter noise from optical 
signals, calibrate devices for individual users, and integrate glucose monitoring with smartwatches, IoT devices, and 
mobile health apps, making diabetes management more efficient and accessible. 
 
For the purpose Artificial Intelligence (AI) application driven pulse oximetry the following points can be considered 
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monitoring. However, challenges like low signal strength, inter-individual variability, and motion artifacts require 
further research and technological advancements for clinical implementation. 
 
3.6 AI’s Role in Non-Invasive Glucose Monitoring 
 
AI plays a crucial role in non-invasive glucose monitoring by enhancing signal processing, predictive analytics, and 
wearable device integration, improving accuracy and personalizing glucose estimation for users [1-3]. 
 
By leveraging machine learning (ML), deep learning, and real-time data analysis, AI helps filter noise from optical 
signals, calibrate devices for individual users, and integrate glucose monitoring with smartwatches, IoT devices, and 
mobile health apps, making diabetes management more efficient and accessible. 
 
For the purpose Artificial Intelligence (AI) application driven pulse oximetry the following points can be considered 
as: 
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3.7.1 Predictive Analytics for Personalized Calibration
Traditional non-invasive glucose monitors suffer from variability 
across individuals. AI-driven predictive modeling helps calibrate 
devices to a user’s specific physiological characteristics, reducing 
errors and improving accuracy.

3.7.2 Integration with Wearable and IoT Devices
AI enables seamless integration of non-invasive glucose 
monitoring with smartwatches, fitness trackers, and mobile health 
apps. Real-time AI analytics can alert users to significant glucose 
fluctuations and suggest lifestyle interventions.

3.7.3 Deep Learning for Improved Spectral Analysis
Deep learning algorithms, such as Convolutional Neural Networks 
(CNNs) as part of Deep Learning functionality and Recurrent 
Neural Networks (RNNs) as well, to enhance spectral analysis by 
detecting subtle changes in glucose-induced optical absorption and 
scattering patterns.

3.7.4 Challenges in Pulse Oximetry-Based Glucose Monitoring
Challenges in pulse oximetry-based glucose monitoring include 
low signal-to-noise ratio, variability in skin properties, motion 
artifacts, and the need for individualized calibration, making 
accurate non-invasive glucose measurement complex.

At a very holistic approach to the topic of challenges in pulse 
oximetry-based glucose monitoring, the following bolt-points can 
be explored as:

Low Signal-to-Noise Ratio
• Blood glucose concentration has a weak influence on light 
absorption compared to oxygenated and deoxygenated hemoglobin, 
making it challenging to isolate glucose-specific signals.

Variability in Skin and Tissue Properties
• Skin pigmentation, hydration levels, and tissue composition can 
affect optical readings, leading to inter-person variability.

Environmental and Motion Artifacts
• Changes in temperature, movement, and ambient light conditions 
can interfere with measurements.

Calibration and Accuracy
• Unlike SpO₂ measurement, which relies on well-established 
calibration models, glucose monitoring requires individualized 
calibration to account for differences in skin and tissue properties.

4. Future Prospect and Conclusion
The future of non-invasive glucose monitoring lies in multi-
sensor integration, AI-driven signal processing, and hybrid 
technologies combining optical and electrochemical methods. 
As research progresses, AI will play a crucial role in achieving 
clinical-grade accuracy, enabling real-time monitoring, and 
personalizing diabetes management [4-7].

Non-invasive glucose monitoring is at an exciting juncture, with 
companies like Abbott, DexCom, Afon Technology, and Know 
Labs driving innovation. AI-driven advancements in signal 
analysis, predictive modeling, and wearable integration are 
set to transform diabetes management, making it more accessible, 
convenient, and effective for millions worldwide.
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